首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51028篇
  免费   6085篇
  国内免费   3013篇
电工技术   4113篇
技术理论   3篇
综合类   4786篇
化学工业   10406篇
金属工艺   1371篇
机械仪表   1951篇
建筑科学   4989篇
矿业工程   4151篇
能源动力   1863篇
轻工业   3556篇
水利工程   1560篇
石油天然气   3819篇
武器工业   395篇
无线电   3332篇
一般工业技术   5897篇
冶金工业   2833篇
原子能技术   1168篇
自动化技术   3933篇
  2024年   100篇
  2023年   749篇
  2022年   1292篇
  2021年   1967篇
  2020年   1902篇
  2019年   1549篇
  2018年   1459篇
  2017年   1701篇
  2016年   1989篇
  2015年   2103篇
  2014年   3272篇
  2013年   3429篇
  2012年   4007篇
  2011年   4032篇
  2010年   3054篇
  2009年   3097篇
  2008年   2774篇
  2007年   3256篇
  2006年   2980篇
  2005年   2589篇
  2004年   2068篇
  2003年   1903篇
  2002年   1601篇
  2001年   1279篇
  2000年   1024篇
  1999年   865篇
  1998年   729篇
  1997年   569篇
  1996年   523篇
  1995年   443篇
  1994年   373篇
  1993年   248篇
  1992年   209篇
  1991年   167篇
  1990年   155篇
  1989年   120篇
  1988年   128篇
  1987年   69篇
  1986年   49篇
  1985年   39篇
  1984年   43篇
  1983年   22篇
  1982年   26篇
  1981年   14篇
  1980年   21篇
  1964年   10篇
  1961年   10篇
  1959年   13篇
  1955年   9篇
  1951年   20篇
排序方式: 共有10000条查询结果,搜索用时 22 毫秒
31.
32.
A new reverse build-up method is developed to fabricate an economical H2-permeable composite membrane. Sputtering and electroplating are used for the formation of a membrane comprised of a 3.7-μm-thick Pd60Cu40 (wt.%) alloy layer and a 13-μm-thick porous Ni support layer, respectively. The H2-permeation measurements are performed under the flow of a gaseous mixture of H2 and He at 300–320 °C and 50–100 kPa of H2 partial pressure. The H2/He selectivity values exceed 300. The activation energy at 300–320 °C is 10.9 kJ mol−1. The H2 permeability of the membrane is 1.25 × 10−8 mol m−1 s−1 Pa−0.5 at 320 °C after 448 h. The estimated Pd cost of the proposed membrane is approximately 1/8 of the cost for a pure Pd60Cu40 membrane. This study demonstrates that the proposed method allows the facile production of low-cost, Pd-based membranes for H2 separation.  相似文献   
33.
Shiga-toxin-producing Escherichia coli strains are pathogenic for humans and cause mild to severe illnesses. In this study, the antimicrobial effect of citral, eugenol, and hexanal in combination with heat shock (HS) was evaluated in terms of the growth, biofilm formation, swarming, and expression of virulence genes of STEC serotypes (O157:H7, O103, O111, and O26). Eugenol was the most effective compound against the growth of E. coli strains (MBC = 0.58 to 0.73 mg/mL), followed by citral (MBC = 0.86 to 1.26 mg/mL) and hexanal (MBC = 2.24 to 2.52 mg/mL). Biofilm formation and swarming motility have great variability between STEC strains. Natural compounds—alone or combined with HS—inhibited biofilm formation; however, swarming motility was induced by most treatments. The expression of the studied genes during biofilm formation and swarming under natural antimicrobials was affected but not in a uniform pattern. These treatments could be used to control contamination of STEC and inhibit biofilm formation.  相似文献   
34.
There is growing awareness that indoor exposure to particulate matter with diameter ≤ 2.5 μm (PM2.5) is associated with an increased risk of adverse health effects. Cooking is a key indoor source of PM2.5 and an activity conducted daily in most homes. Population scale models can predict occupant exposures to PM2.5, but these predictions are sensitive to the emission rates used. Reported emission rates are highly variable and are typically for the cooking of single ingredients and not full meals. Accordingly, there is a need to assess PM2.5 emissions from the cooking of complete meals. Mean PM2.5 emission rates and source strengths were measured for four complete meals. Temporal PM2.5 concentrations and particle size distributions were recorded using an optical particle counter (OPC), and gravimetric sampling was used to determine calibration factors. Mean emission rates and source strengths varied between 0.54—3.7 mg/min and 15—68 mg, respectively, with 95% confidence. Using a cooker hood (apparent capture efficiency > 90%) and frying in non‐stick pans were found to significantly reduce emissions. OPC calibration factors varied between 1.5 and 5.0 showing that a single value cannot be used for all meals and that gravimetric sampling is necessary when measuring PM2.5 concentrations in kitchens.  相似文献   
35.
In theory, the combination of inorganic materials and polymers may provide a synergistic performance for mixed‐matrix membranes (MMMs); however, the filler dispersion into the MMMs is a crucial technical parameter for obtaining compelling MMMs. The effect of the filler distribution on the gas separation performance of the MMMs based on Matrimid®‐PEG 200 and ZIF‐8 nanoparticles is demonstrated. The MMMs were prepared by two different membrane preparation procedures, namely, the traditional method and non‐dried metal‐organic framework (MOF) method. In CO2/CH4 binary mixtures, the MMMs were tested under fixed conditions and characterized by various methods. Finally, regardless of the MMM preparation procedure, the incorporation of 30 wt % ZIF‐8 nanoparticles allowed to increase the CO2 permeability in MMMs. The ZIF‐8 dispersion influenced significantly the separation factor.  相似文献   
36.
To improve the properties of diblock copolystyrene-based anion exchange membranes (AEMs), a series of AEMs with comb-shaped quaternary ammonium (QA) architecture (QA-PSm-b-PDVPPAn-xC where x denotes the number of carbon atoms in different alkyl tail chains and has values of 1, 4, 8, and 10 and C denotes carbon) were designed and synthesized via subsequent quaternization reactions with three different alkyl halogens (methyl iodide and N-alkane bromines (CH3[CH2] x-1Br where x = 4, 8, and 10). Compared with triblock analogues quaternized with methyl iodide in our previous research, QA-PSm-b-PDVPPAn-xC (x = 4, 8, and 10) AEMs are more flexible with the introduction of a long alkyl tail chain; this probably impedes crystallization of the rigid polystyrene-based main chain and induces sterically adjustable ionic association. An increase in the pendant alkyl tail chain length generally led to enhanced microphase separation of the obtained AEMs, and this was confirmed using small-angle X-ray scattering and atomic force microscopy. The highest conductivity (25.5 mS cm−1) was observed for QA-PS120-b-PDVPPA80-10C (IEC = 1.94 meq g–1) at 20 °C. Furthermore, the water uptake (<30%) and swelling ratio (<13.1%) of QA-PSm-b-PDVPPAn-xC AEMs are less than half of these corresponding values for their triblock counterparts. The QA-PS120-b-PDVPPA80-10C membrane retained a maximum stability that was as high as 86.8% of its initial conductivity after a 40-day test (10 M NaOH, 80 °C), and this was probably because of the steric shielding of the cationic domains that were surrounded by the longest alkyl tail chains. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47370.  相似文献   
37.
Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), which exhibits a high mixed oxide ionic-electronic conduction, was used for the fabrication of an oxygen separation membrane. An asymmetric structure, which was a thin and dense BSCF membrane layer supported on a porous BSCF substrate, was fabricated by the electrophoretic deposition method (EPD). Porous BSCF supports were prepared by the uniaxial pressing method using a powder mixture with BSCF and starch as the pore-forming agent (0–50 wt.%). The sintering behaviors of the porous support and the thin layer were separately characterized by dilatometry to determine the co-fired temperature at which cracking did not occur. A crack-free and thin dense membrane layer, which had about a 15 μm thickness and >95% relative density, was obtained after optimizing the processes of EPD and sintering. The dense/porous interface was well-bonded and the oxygen permeation flux was 2.5 ml (STP) min−1 cm-2 at 850 °C.  相似文献   
38.
Herein, poly (phenylene) oxide (PPO)-based cross-linked anion exchange membranes (AEMs) with flexible, long-chain, bis-imidazolium cation cross-linkers are designed and synthesized. Although the cross-linked membranes possess high ion exchange capacity (IEC) values of up to 3.51–3.94 meq g−1, they have a low swelling degree and good mechanical strength because of their cross-linked structure. Though the membranes with the longest flexible bis-imidazolium cation cross-linker (BMImH-PPO) possess the lowest IEC among these PPO-based AEMs, they show the highest conductivity (24.10 mS cm−1 at 20 °C) and highest power density (325.7 mW cm−2 at 60 °C) because of the wide hydrophilic/hydrophobic microphase separation in the membranes that promote the construction of ion transport channels, as confirmed by atom force microscope (AFM) images and the small angle X-ray scattering (SAXS) analyses. Furthermore, the BMImH-PPO samples exhibit good chemical stability (10% and 6% decrease in IEC and conductivity, respectively, in 2 M KOH at 80 °C for 480 h, and a 22% decrease in weight in Fenton's reagent at 60 °C for 120 h), making such cross-linked AEMs potentially applicable in alkaline anion exchange membrane fuel cells.  相似文献   
39.
Graphite–SiC micro-composites have been prepared in–house by carbothermal reduction process. Controlling the process parameters including the weight ratio of SiO2 to graphite as well as carbothermal reduction temperature during the micro-composite preparation favors the homogeneous formation of SiC with preferred morphologies like ribbons and whiskers/fibers. The micro-composite modified low carbon MgO-C refractories have exhibited significantly improved bulk properties over the standard composition. To understand the beneficial role of SiC reinforcement on hot strength performance under air oxidizing conditions, we propose a scaling parameter known as strength factor (fs) based on the ratio of hot strength (HMOR) to cold strength (CCS). Correlating the strength factor data (fs) with oxidative damage provides new insights into the reinforcing effects of distinct SiC morphologies in this new class of micro-composite fortified refractory systems over the standard compositions.  相似文献   
40.
Spontaneous mutations in the EEF1A2 gene cause epilepsy and severe neurological disabilities in children. The crystal structure of eEF1A2 protein purified from rabbit skeletal muscle reveals a post-translationally modified dimer that provides information about the sites of interaction with numerous binding partners, including itself, and maps these mutations onto the dimer and tetramer interfaces. The spatial locations of the side chain carboxylates of Glu301 and Glu374, to which phosphatidylethanolamine is uniquely attached via an amide bond, define the anchoring points of eEF1A2 to cellular membranes and interorganellar membrane contact sites. Additional bioinformatic and molecular modeling results provide novel structural insight into the demonstrated binding of eEF1A2 to SH3 domains, the common MAPK docking groove, filamentous actin, and phosphatidylinositol-4 kinase IIIβ. In this new light, the role of eEF1A2 as an ancient, multifaceted, and articulated G protein at the crossroads of autophagy, oncogenesis and viral replication appears very distant from the “canonical” one of delivering aminoacyl-tRNAs to the ribosome that has dominated the scene and much of the thinking for many decades.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号